Conceptual questions

Question 1. If \mathbf{u} and \mathbf{v} are vectors of lengths 2 and 3 respectively, what are the largest and smallest possible values of $\mathbf{u} \cdot \mathbf{v}$? Draw pictures for both of these situations.

Question 3. With notation as in the preceding question, what kind of shape does the equation $(\mathbf{r}-\mathbf{a}) \cdot \mathbf{b}=0$ define in the $x y$-plane?

Question 2. If $\mathbf{r}=\langle x, y\rangle, \mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}\right\rangle$, what kind of shape does the equation $(\mathbf{r}-\mathbf{a}) \cdot(\mathbf{r}-\mathbf{b})=0$ define in the $x y$-plane?

Computations

Problem 1. Let A be the point with coordinates $(1,3,-2)$ and let B be the point with coordinates $(4,6,-2)$.
(a) What is the vector $\overrightarrow{A B}$?
(b) Let C be the point ($3,7,2$), and let D be the point on the line $\overline{A C}$ which is closest to B (so that $\overline{B D}$ and $\overline{A C}$ meet at a right angle). Find the vector $\overrightarrow{A D}$.
(c) Find the vector $\overrightarrow{B D}$.
(d) Find the vector $\overrightarrow{A E}$, which is obtained by "reflecting" $\overrightarrow{A B}$ across the line $\overrightarrow{A C}$.

See Figure 1.

Problem 2. There are no equilateral triangles in the plane \mathbb{R}^{2} whose three vertices all have rational number coordinates. (For example, if $(0,0)$ and $(2,0)$ were two of the three vertices, then the third would be $(\sqrt{3}, \pm 1)$, and $\sqrt{3}$ is irrational.) I'm sure you agree that having to deal with irrational numbers is somewhat inconvenient for vector computations.

Luckily, there are actually equilateral triangles in space \mathbb{R}^{3} whose vertices all have integer coordinates!
(a) Verify that the triangle with vertices $A(1,0,0), B(0,1,0)$, and $C(0,0,1)$ is equilateral (all sides the same length).
(b) In particular, that means all three internal angles are $\pi / 3$ (60 degrees). Verify this fact using the dot product.

One can also construct a regular (i.e. completely symmetric, all sides the same length) tetrahedron in \mathbb{R}^{3} whose vertices all have integer coordinates.
(a) Take D to be the point $(1,1,1$, Verify that the distance from D to each of the points A, B, C is the same as the side length you computed for the equilateral triangle $\triangle A B C$ earlier.
(b) Find the coordinates of the center of the tetrahedron $A B C D$. (Take the average of the corners.)
(c) Call the center O. Use the dot product to compute the angle $\angle A O B$. (If you've taken chemistry, you may have learned that a tetrahedral molecule has a bond angle of this value; this problem shows you how to derive that fact.)

Figure 1

Questions:

1) Largest possible is $6: \xrightarrow[\vec{v}]{\vec{u}}$
2) Circle with diameter connecting the points

Smallest possible is $-b: \underset{\vec{u}}{\leftrightarrows}$

$$
\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)
$$

3) Line through $\left(a_{1}, a_{2}\right)$ perpendicular to the vector $\left\langle b_{1}, b_{2}\right\rangle$

Computations:

1) a) $(3,3,0\rangle$
b) $\overrightarrow{A D}=\operatorname{proj}_{\overrightarrow{A C}} \overrightarrow{A B}=\cdots$
c) $\overrightarrow{B D}=\overrightarrow{A D}-\overrightarrow{A B}=\cdots$

$$
\text { d) } \overrightarrow{A E}=\overrightarrow{A D}+\overrightarrow{B D} \text { or } \overrightarrow{A B}+2 \overrightarrow{B D} \text {. }
$$

2) al Exch side has length $\sqrt{2}$
b) For example: $\overrightarrow{A B}=\langle-1,1,0\rangle, \overrightarrow{A C}=\langle-1,0,1\rangle$
angl: $\cos \theta=\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{|\overrightarrow{A B}||\overrightarrow{A C}|}=\frac{1}{2}$ so $\theta=\frac{\pi}{3}$.
a) omitted
b) $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
c) $\overrightarrow{O A}=\left\langle\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right\rangle \overrightarrow{O B}=\left\langle-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right\rangle$

$$
\cos \theta=\frac{-1 / 4}{3 / 4}=-\frac{1}{3} . \quad \theta \approx 109.5^{\circ}
$$

