Math 53: Multivariable Calculus

Sections 102, 103

Handout for 2020-02-03

Conceptual questions

Question 1. If **u** and **v** are vectors of lengths 2 and 3 respectively, what are the largest and smallest possible values of $\mathbf{u} \cdot \mathbf{v}$? Draw pictures for both of these situations.

Question 2. If $\mathbf{r} = \langle x, y \rangle$, $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$, what kind of shape does the equation $(\mathbf{r} - \mathbf{a}) \cdot (\mathbf{r} - \mathbf{b}) = 0$ define in the *xy*-plane?

Question 3. With notation as in the preceding question, what kind of shape does the equation $(\mathbf{r} - \mathbf{a}) \cdot \mathbf{b} = 0$ define in the *xy*-plane?

Computations

Problem 1. Let *A* be the point with coordinates (1, 3, -2) and let *B* be the point with coordinates (4, 6, -2).

- (a) What is the vector \overrightarrow{AB} ?
- (b) Let C be the point (3,7,2), and let D be the point on the line \overline{AC} which is closest to B (so that \overline{BD} and \overline{AC} meet at a right angle). Find the vector \overline{AD} .
- (c) Find the vector \overrightarrow{BD} .
- (d) Find the vector \overrightarrow{AE} , which is obtained by "reflecting" \overrightarrow{AB} across the line \overrightarrow{AC} .

See Figure 1.

Problem 2. There are no equilateral triangles in the plane \mathbb{R}^2 whose three vertices all have rational number coordinates. (For example, if (0,0) and (2,0) were two of the three vertices, then the third would be $(\sqrt{3}, \pm 1)$, and $\sqrt{3}$ is irrational.) I'm sure you agree that having to deal with irrational numbers is somewhat inconvenient for vector computations.

Luckily, there are actually equilateral triangles in space \mathbb{R}^3 whose vertices all have integer coordinates!

- (a) Verify that the triangle with vertices A(1, 0, 0), B(0, 1, 0), and C(0, 0, 1) is equilateral (all sides the same length).
- (b) In particular, that means all three internal angles are $\pi/3$ (60 degrees). Verify this fact using the dot product.

One can also construct a regular (i.e. completely symmetric, all sides the same length) tetrahedron in \mathbb{R}^3 whose vertices all have integer coordinates.

- (a) Take D to be the point $(1, 1, 1, \frac{1}{2})$. Verify that the distance from D to each of the points A, B, C is the same as the side length you computed for the equilateral triangle $\triangle ABC$ earlier.
- (b) Find the coordinates of the center of the tetrahedron ABCD. (Take the average of the corners.)
- (c) Call the center O. Use the dot product to compute the angle $\angle AOB$. (If you've taken chemistry, you may have learned that a tetrahedral molecule has a bond angle of this value; this problem shows you how to derive that fact.)

FIGURE 1

Computedions:
1) a)
$$(3,3,0)$$
 b) $\overrightarrow{AD} = \operatorname{proj}_{\overrightarrow{AL}} \overrightarrow{AB} = \cdots$
c) $\overrightarrow{BD} = \overrightarrow{AD} - \overrightarrow{AB} = \cdots$ d) $\overrightarrow{AE} = \overrightarrow{AD} + \overrightarrow{BD}$ or $\overrightarrow{AB} + 2\overrightarrow{BD}$.
2) a) \overrightarrow{Fad} side has length \overrightarrow{JZ} b) \overrightarrow{Far} example: $\overrightarrow{AB} = \langle -1,1,0 \rangle$, $\overrightarrow{Ac} = \langle -1,0,1 \rangle$
 $angle: \cos \Theta = \frac{\overrightarrow{AB} \cdot \overrightarrow{Ac}}{\overrightarrow{IAB} ||\overrightarrow{Ac}|} = \frac{1}{2} \quad so \quad \Im = \frac{\overline{T}}{\overline{3}}$.
(a) omitted b) $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$
(b) $\overrightarrow{OA} = \langle \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2} \rangle$ $\overrightarrow{OB} = \langle -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2} \rangle$
 $\cos \Theta = \frac{-\frac{1}{4}}{\frac{3}{4}} = -\frac{1}{3}$. $\Theta \approx 10.9.5^{\circ}$